In-Degree and PageRank of Web pages: Why do they follow similar power laws?

نویسندگان

  • Nelly Litvak
  • Werner R. W. Scheinhardt
  • Yana Volkovich
چکیده

The PageRank is a popularity measure designed by Google to rank Web pages. Experiments confirm that the PageRank obeys a ‘power law’ with the same exponent as the In-Degree. This paper presents a novel mathematical model that explains this phenomenon. The relation between the PageRank and In-Degree is modelled through a stochastic equation, which is inspired by the original definition of the PageRank, and is analogous to the well-known distributional identity for the busy period in the M/G/1 queue. Further, we employ the theory of regular variation and Tauberian theorems to analytically prove that the tail behavior of the PageRank and the In-Degree differ only by a multiplicative factor, for which we derive a closed-form expression. Our analytical results are in good agreement with experimental data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In-Degree and PageRank: Why Do They Follow Similar Power Laws?

PageRank is a popularity measure designed by Google to rank Web pages. Experiments confirm that PageRank values obey a power law with the same exponent as In-Degree values. This paper presents a novel mathematical model that explains this phenomenon. The relation between PageRank and In-Degree is modeled through a stochastic equation, which is inspired by the original definition of PageRank, an...

متن کامل

Information Ranking and Power Laws on Trees

We consider the stochastic analysis of information ranking algorithms of large interconnected data sets, e.g. Google’s PageRank algorithm for ranking pages on the World Wide Web. The stochastic formulation of the problem results in an equation of the form R D = Q+ N X

متن کامل

Determining Factors Behind the PageRank Log-Log Plot

We study the relation between PageRank and other parameters of information networks such as in-degree, out-degree, and the fraction of dangling nodes. We model this relation through a stochastic equation inspired by the original definition of PageRank. Further, we use the theory of regular variation to prove that PageRank and in-degree follow power laws with the same exponent. The difference be...

متن کامل

Google's PageRank and beyond - the science of search engine rankings

Why doesn't your home page appear on the first page of search results, even when you query your own name? How do other web pages always appear at the top? What creates these powerful rankings? And how? The first book...

متن کامل

Mathematical Properties and Analysis of Google ’ s PageRank

To determine the order in which to display web pages, the search engine Google computes the PageRank vector, whose entries are the PageRanks of the web pages. The PageRank vector is the stationary distribution of a stochastic matrix, the Google matrix. The Google matrix in turn is a convex combination of two stochastic matrices: one matrix represents the link structure of the web graph and a se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/math/0607507  شماره 

صفحات  -

تاریخ انتشار 2006